
@2004-2006 Backbase B.V., All Rights Reserved Page 1 of 7

The Windows Starter Kit

1. Introduction

The Windows Starter Kit describes the functionality that is required to build a

windows application in BXML. Its basic layout of the application is a free form
desktop; you can open new windows from a menu, the windows can be resized

and placed anywhere on the desktop, and you can minimize and maximize the

windows.

It is interesting to compare the windows starter kit with the portal starter kit:

both essentially contain the same content, but use a different layout. The key
difference is that content is shown in portlets in the portal starter kit, and in

@2004-2006 Backbase B.V., All Rights Reserved Page 2 of 7

windows in the windows starter kit. The fixed three-column grid layout of the

portal is replaced by a free-flow window-positioning layout.

Although the purpose of this document is to explain how to build a Windows
application using BXML, it is not intended to be a complete or definitive reference

for any of the BXML functionality described. For detailed information on the
functionality described, refer to the BXML Reference PDF.

2. The Core Structure of the Windows Application

The windows application can essential be broken up into 2 distinct functional
regions, the Window Manager and the Windows, which in turn contain different

modules.

This section will firstly provide a brief functional description of these regions and
their modules, and then go on to explain the techniques used for determining the

layout of these modules on the screen, for keeping the code for functionally

distinct modules separate and for loading and unloading of the various modules.

2.1 The Regions

Window Manager

The window manager, a bar at the bottom of the application layout, controls the
windows. From the window manager, new windows can be opened and minimized

windows can be re-opened.

The Windows
Windows are containers for arbitrary content. Windows can be closed, minimized

and maximized.

2.2 Include files

A key technique used for keeping functionally distinct modules separate from

each other is the use of include files. Include files are well-formed XML files which

contain both BXML and normal HTML. They can be small and simple, merely
containing a few behavioral instructions, or a small module such as a shopping

cart, or they can be very large and themselves contain multiple nested include
files. In the portal application four files are included from the main index.html:

Initially the basic window, windowarea and taskbar functionality – defined as

behaviors and Backbase controls – is included with the following statements:

<s:include b:url="../../controls/backbase/b-taskbar /b-taskbar.xml" />
<s:include b:url="../../controls/backbase/b-window/ b-window.xml" />
<s:include b:url="../../controls/backbase/b-windowa rea/b-windowarea.xml" />

@2004-2006 Backbase B.V., All Rights Reserved Page 3 of 7

2.3 Defining Screen Partitioning

The most useful BXML tool for controlling screen layout is the panelset. Panelsets

work in much the same way that a frame set does. You can easily divide a screen
up into rows and columns, which are called panels. These rows and columns have

either a fixed width expressed in pixels, ems, picas etc., or they can have a
relative width given as a percentage of the currently available width of the

panelset parent. Alternatively, a panel can fill up the remaining available space
using the wildcard (*) sign. The key difference between a panelset and a

frameset is that a panelset is entirely built using div elements and therefore does

not consist of separate files like a frameset.

The Window Starter Kit has a fairly simple page layout. There is only one panelset

with two rows. The task bar at the bottom has a fixed height. The rest of the
screen is dynamic in height and consumes the remaining screen space.

<!-- Main Panelset -->
<b:panelset b:rows="* 28px">
 <b:panel>
 <!-- Windowarea Panel -->
 </b:panel>
 <b:panel>
 <!-- Taskbar Panel -->
 </b:panel>
</b:panelset>

3. Event Handling and Behaviors

One of the key strengths of BXML is the ease and simplicity with which events can

be handled. A unique feature of BXML is the behavior construct. A behavior is a
generic construct in which, you the developer, can define which instructions, or in

BXML terminology, tasks should be executed when a given event occurs. This

behavior can then be applied to any given element, which then inherits all event
handlers defined within the behavior. This makes it easy to reuse functionality

and also to separate the structure of the page from the behavior.

The b-window-closebutton behavior is a fairly simple behavior which illustrates

the key structure of a behavior and two different features of behaviors – state

control and task execution. You can find this behavior in the main b-window.xml
include file. The behavior is used by the close buttons on all windows in the

Window Manager.

<s:behavior b:name="b-window-closebutton" b:behavio r="b-window-button">
 <s:initatt b:tooltiptext="Close" />
 <s:state b:on="deselect"
 b:normal="b-window-button b-window-closebutton"
 b:hover="b-window-button b-window-closebutton b-wi ndow-button-hov"
 b:press="b-window-button b-window-closebutton b-wi ndow-button-pres" />
 <s:event b:on="command" b:action="trigger" b:even t="close" b:target="../../.." />
</s:behavior>

As you can see, this behavior contains two child elements; an s:state element

and an s:event element. These elements define event handlers for when a
particular event is triggered. The s:event tags are the most common children of

behaviours, whereas s:state tags are a special case, so lets look at the s:event
first. It is triggered by a command event, which is the event that is triggered
when an item is clicked (mouse or keyboard). So when a user clicks the close
button on a window, the command event is triggered and the command event
handler is executed. Event handlers can contain s:task tags, which are used to
execute actions. However, since this event handler only has one task, you can

@2004-2006 Backbase B.V., All Rights Reserved Page 4 of 7

use the shorthand. The trigger action is defined on the event handler which is
used to manually trigger an event on a target element. In this case, it triggers a
custom event called close, which is triggered on the window to take care of
closing the window. (The b:target attribute indicates that the target of the event
is the window; to understand properly what the attribute is doing you first have

to understand some XPath, which will be explained in section 4.)

The s:state tag is a specialised form of s:task, which is used solely for enabling
CSS class changes to be linked to state changes and mouse movements. It

makes it very easy to make attractive mouse roll-overs. This s:state tag is only
active when the close button is deselected, which is its default state. It defines
three different sets of classes to be used by this button depending on:

• whether it is in its normal state
• whether the mouse is hovering over it

• whether the mouse button is pressed down.
These classes are defined using respectively the b:normal, b:hover and b:press
attributes.

4. XPath

An essential aspect of BXML is the ability to target elements on the screen and to
be able to retrieve information about these elements or their attributes. The

XPath language is used for all of these types of operations. Almost every task
that is executed has a target on which the task should be executed. The target is

not always visible in the statement, since the default target is the element itself
which is using the behavior (known as the “context node”). It is very important to

have at least a basic understanding of XPath if you want to be able to build BXML

applications. The more thoroughly you understand XPath, the more you will be
able to leverage its power across BXML and the more powerful and flexible

applications you will be able to create.

A simple example of an XPath statement is the targeting of an element based on
its id attribute. To keep things simple, take the following example (not to be

found in the starter kit):

<s:behavior b:name="simple-show-hide">
 <s:event b:on="select" b:action="show" b:target=" id('popupWindow')" />
 <s:event b:on="deselect" b:action="hide" b:target ="id('popupWindow')" />
</s:behavior>

When an element that uses this behavior becomes selected, a show action is
executed on the element indicated by the b:target attribute which has the
following value:

id('popupWindow')

This causes the element with the id attribute of ‘popupWindow’ to be used for the

show action. On the deselect event of the element the inverse action will happen,

which will hide the element with the id attribute of 'popupWindow'.

@2004-2006 Backbase B.V., All Rights Reserved Page 5 of 7

5. Window Controls

An important technique used in building BXML application is the creation and
reuse of custom controls. Basically, one of these custom controls is a definition

for a new BXML tag, which can then be used throughout your application.

Although the controls used in most of the Windows Starter Kit are fairly simple, it
is good practices to place reusable UI elements in a control definition. Let’s

examine the way windows are built up in this application:

<b:window id="window_news" style="left:10px;top:10p x;width:370px;height:290px;">
 <b:windowhead><!-- window title here --></b:windo whead>
 <b:windowbody>
 <!-- window content -->
 </b:windowbody>
</b:window>

As you can see, essentially the window is built using 3 main tags: The b:window
tag is the main container, and this contains a b:windowhead to define the title of
the window and a b:windowbody tag that contains the window content. These
three tag are custom tags, which are defined not in the BPC, but elsewhere in the
application.

So let’s take a look at these definitions and see how these tags are translated into
windows. You can find all of these definitions by searching the contents of the b-
window.xml file:

<s:htmlstructure b:name="b:window" b:behavior="b-wi ndow">
 <div><s:innercontent /></div>
</s:htmlstructure>

As you can see, the definition for this control consists of a special tag called

s:htmlstructure. This tag is used to define new tags; the b:name attribute is used
to the tag a name, b:window in this case. Within the s:htmlstructure tag, you can
insert any HTML tags which you want to be rendered when the new tag is used.
(Note that only HTML tags may be used within the s:htmlstructure tag.) Finally,
inside this HTML the s:innercontent tag is inserted at the point where you want
the child elements of the new tags to be placed. Obviously, the child elements of

the new tag may be any BXML tag and not just HTML. When we examine the

HTML that makes up this new b:window tag, it doesn’t seem to do much more
than place one div tag around the contents.

So all in all, the b:window doesn’t seem to do much that is very useful, but there

is more. A window behavior has also been defined. This window behavior is
relatively complicated and it will not be described here in full; only a few parts of

the code will be explained, when necessary. Before we continue, note that the
b:behavior attribute can be used on a s:htmlstructure tag to bind this behavior to
all instances of b:window. For example:

<s:htmlstructure b:name="b:window" b:behavior="b-window">

Now by examining some key parts of this window behavior the working of the
b:window element should become clear.

One of the main event handlers in the behavior is for the construct event. This
event is triggered as soon as the b:window tag is rendered. Within this event
handler, a large number of instructions are contained for setting up windows and

where, depending on the attributes on the b:window tag, different decisions will
be made about the final structure of the window.

@2004-2006 Backbase B.V., All Rights Reserved Page 6 of 7

One example of this is the placement of “window buttons” to be able to use the

close, minimize and maximize functionality of the window.

<s:if b:test="not(@b:windowbuttons = 'none')">
 <s:render b:destination="b:windowhead" b:mode="a slastchild">
 <div class="b-windowbutton-container"></div>
 </s:render>
 <s:variable b:name="button-container" b:select=" b:windowhead/div[last()]" />
 <s:render b:test="contains(@b:windowbuttons, 'cl ose')"
 b:destination="$button-container"
 b:mode="asfirstchild">
 <b:window-closebutton />
 </s:render>
 <s:render b:test="contains(@b:windowbuttons, 'ma ximize')"
 b:destination="$button-container"
 b:mode="asfirstchild">
 <b:window-maximizerestorebutton />
 </s:render>
 <s:render b:test="contains(@b:windowbuttons, 'mi nimize')"
 b:destination="$button-container"
 b:mode="asfirstchild">
 <b:window-minimizebutton />
 </s:render>
 <s:task b:action="set"
 b:target="$button-container/style::width "
 b:value="{concat(count($button-container /*) * 17, 'px')}" />
</s:if>

The first part is an s:if tag which contains an XPath statement that tests for the

value of the attribute b:windowbuttons. When it has the value none, no buttons
are added, so no action has to be undertaken. When it has any other value, it

checks the attribute for specific values.

First, a container for the buttons will be rendered into the b:windowhead. This
container takes care of the button positioning.

Next, a variable ($button-container) that points to the container is defined. This
variable is used for defining the destination of the s:render tags that render the
buttons. Each of the following s:render tags is only executed if the
b:windowbuttons attribute contains a certain value (close, maximize and
minimize).

The s:render tag is an important tag which can have many uses in dynamic

applications. In its simplest form, the contents of the s:render tag is simply
copied to the target specified by the b:destination attribute. However the
contents of s:render tag can be quite dynamic, through the use of XPath and
XSLT-like commands. Refer to the BXML reference for details of which XSLT

commands you can use within the s:render tag.

When all possible values are checked, and the buttons have been rendered, some
styling of the button container occurs. In order to make sure all buttons fit in the

container, it counts the number of buttons (represented by *) in the container,

multiplies the result with 17 and then adds 'px' to it to create a valid width.

If you examine the rest of the construct behavior, you can see that depending on
the custom attributes and their values found on the b:window element that is

being constructed, different attributes and elements will get set onto the
b:window element as it is constructed. This makes it possible for a few

parameters on the window element to have a large impact on the eventual
structure of the window.

@2004-2006 Backbase B.V., All Rights Reserved Page 7 of 7

The rest of the window controls are composed is a similar way; once you

understand how one works, you can more or less understand the others. Once
again, this document is in no way meant to provide a complete explanation of

how the Windows Starter Kit works, or to cover every aspect of BXML. You are
advised to look through the code of Windows Starter Kit yourself and consult the

BXML documentation where necessary.

